Source code for gustaf.show

"""gustaf/gustaf/show.py.

Everything related to show/visualization.
"""
import sys

import numpy as np

from gustaf import settings, utils

# @linux it raises error if vedo is imported inside the function.
try:
    import vedo
except ImportError as err:
    # overwrites the vedo module with an object which will throw an error
    # as soon as it is used the first time. This means that any non vedo
    # functionality works as before, but as soon as vedo is used a
    # comprehensive exception will be raised which is understandable in
    # contrast to the possible errors previously possible
    from gustaf.helpers.raise_if import ModuleImportRaiser

    vedo = ModuleImportRaiser("vedo", err)


# enable `gus.show()`
# taken from https://stackoverflow.com/questions/1060796/callable-modules
# will use this until this module is renamed
class _CallableShowDotPy(sys.modules[__name__].__class__):
    def __call__(self, *args, **kwargs):
        """call show()"""
        return show(*args, **kwargs)


sys.modules[__name__].__class__ = _CallableShowDotPy


[docs] def show(*gus_obj, **kwargs): """Shows using appropriate backend. Parameters ----------- *gus_obj: gustaf objects Returns -------- None """ vis_b = settings.VISUALIZATION_BACKEND if vis_b.startswith("vedo"): return show_vedo(*gus_obj, **kwargs) elif vis_b.startswith("trimesh"): pass elif vis_b.startswith("matplotlib"): pass else: raise NotImplementedError
[docs] def show_vedo( *args, **kwargs, ): """`vedo.show` wrapper. Each args represent one section of window. In other words len(args) == N, where N corresponds to the parameter for vedo.show(). Parameters ----------- *args: Union[List[Union[gustaf_obj, vedo_obj]], Dict[str, Any]]] """ # vedo plotter parameter N = len(args) offs = kwargs.get("offscreen", False) interact = kwargs.get("interactive", True) plt = kwargs.get("vedoplot", None) skip_clear = kwargs.get("skip_clear", False) close = kwargs.get("close", None) size = kwargs.get("size", "auto") cam = kwargs.get("cam", None) title = kwargs.get("title", "gustaf") background = kwargs.get("background", "white") return_show_list = kwargs.get("return_showable_list", False) def clear_vedo_plotter(plotter, num_renderers, skip_cl=skip_clear): """enough said.""" # for whatever reason it is desired if skip_cl: return None for i in range(num_renderers): plotter.clear(at=i) return None def cam_tuple_to_list(dict_cam): """if entity is tuple, turns it into list.""" if dict_cam is None: return None for key, value in dict_cam.items(): if isinstance(value, tuple): dict_cam[key] = list(value) return dict_cam # get plotter if plt is None: plt = vedo.Plotter( N=N, sharecam=False, offscreen=offs, size=size, title=title, bg=background, ) else: # check if plt has enough Ns trueN = np.prod(plt.shape) clear_vedo_plotter(plt, trueN) # always clear. if trueN != N: utils.log.warning( "Number of args exceed given vedo.Plotter's capacity.", "Assigning a new one", ) title = plt.title if close: # only if it is explicitly stated plt.close() # Hope that this truly releases.. # assign a new one plt = vedo.Plotter( N=N, sharecam=False, offscreen=offs, size=size, title=title, bg=background, ) # loop and plot for i, arg in enumerate(args): # form valid input type. if isinstance(arg, dict): show_list = list(arg.values()) elif isinstance(arg, list): show_list = arg.copy() else: # raise TypeError( # "For vedo_show, only list or dict is valid input") utils.log.debug( "one of args for show_vedo is neither `dict` nor", "`list`. Putting it naively into a list.", ) show_list = [arg] # quick check if the list is gustaf or non-gustaf # if gustaf, make it vedo-showable. # if there's spline, we need to pop the element and # extend showables to the list. # A show_list is a list to be plotted into a single sub frame of the # plot list_of_showables = [] for sl in show_list: if not isinstance(sl, list): sl = [sl] for k, item in enumerate(sl): if hasattr(item, "showable"): tmp_showable = item.showable(backend="vedo", **kwargs) # splines return dict # - maybe it is time to do some typing.. if isinstance(tmp_showable, dict): # add to extend later list_of_showables.extend(list(tmp_showable.values())) else: # replace gustaf_obj with vedo_obj. list_of_showables.append(tmp_showable) else: list_of_showables.extend(sl) # set interactive to true at last element if int(i + 1) == len(args): plt.show( list_of_showables, at=i, interactive=interact, camera=cam_tuple_to_list(cam), # offscreen=offs, ) else: plt.show( list_of_showables, at=i, interactive=False, camera=cam_tuple_to_list(cam), # offscreen=offs, ) if interact and not offs: # only way to ensure memory is released clear_vedo_plotter(plt, np.prod(plt.shape)) if close or close is None: # explicitly given or None. # It seems to leak some memory, but here it goes. plt.close() # if i close it, this cannot be reused... plt = None if return_show_list: return (plt, list_of_showables) else: return plt
def _vedo_showable(obj, as_dict=False, **kwargs): """Generates a vedo obj based on `kind` attribute from given obj, as well as show_options. Parameters ----------- obj: gustaf obj as_dict: bool If True, returns vedo objects in a dict. Corresponding main objects will be available with ["main"] key. Else, returns vedo.Assembly object, where all the objects are grouped together. **kwargs: kwargs Will try to overwrite applicable items. Returns -------- vedo_obj: vedo obj """ # incase kwargs are defined, we will make a copy of the object and # try to overwrite all the applicable kwargs. if kwargs: # keep original ones and assign new show_options temporarily orig_show_options = obj.show_options obj._show_options = obj.__show_option__(obj) orig_show_options.copy_valid_options(obj.show_options) for key, value in kwargs.items(): try: obj.show_options[key] = value except BaseException: utils.log.debug( f"Skipping invalid option {key} for " f"{obj.show_options._helps}" ) continue # minimal-initialization of vedo objects vedo_obj = obj.show_options._initialize_showable() # as dict? if as_dict: return_as_dict = dict() # set common values. Could be a perfect place to try :=, but we want to # support p3.6. c = obj.show_options.get("c", None) if c is not None: vedo_obj.c(c) alpha = obj.show_options.get("alpha", None) if alpha is not None: vedo_obj.alpha(alpha) lighting = obj.show_options.get("lighting", None) if lighting is not None: vedo_obj.lighting(lighting) vertex_ids = obj.show_options.get("vertex_ids", False) element_ids = obj.show_options.get("element_ids", False) # special treatment for vertex if obj.kind.startswith("vertex"): vertex_ids = vertex_ids | element_ids if element_ids: utils.log.debug( "`element_ids` option is True for Vertices. Overwriting it as" "vertex_ids." ) element_ids = False if vertex_ids: # use vtk font. supposedly faster. And differs from cell id. vertex_ids = vedo_obj.labels("id", on="points", font="VTK") if not as_dict: vedo_obj += vertex_ids else: return_as_dict["vertex_ids"] = vertex_ids if element_ids: # should only reach here if this obj is not vertex element_ids = vedo.Points(obj.centers()).labels("id", on="points") if not as_dict: vedo_obj += element_ids else: return_as_dict["element_ids"] = element_ids # data plotting data_name = obj.show_options.get("data_name", None) vertex_data = obj.vertex_data.as_scalar(data_name, None) if data_name is not None and vertex_data is not None: # transfer data if obj.kind.startswith("edge"): vedo_obj.pointdata[data_name] = vertex_data[obj.edges].reshape( -1, vertex_data.shape[1] ) else: vedo_obj.pointdata[data_name] = vertex_data # form cmap kwargs for init cmap_keys = ("vmin", "vmax") cmap_kwargs = obj.show_options[cmap_keys] # set a default cmap if needed cmap_kwargs["input_cmap"] = obj.show_options.get("cmap", "plasma") cmap_kwargs["alpha"] = obj.show_options.get("cmap_alpha", 1) # add data_name cmap_kwargs["input_array"] = data_name # set cmap # pass input_cmap as positional arg to support 2023.4.3. # arg name changed in 2023.4.4 vedo_obj.cmap(cmap_kwargs.pop("input_cmap"), **cmap_kwargs) # at last, scalarbar sb_kwargs = obj.show_options.get("scalarbar", None) if sb_kwargs is not None and sb_kwargs is not False: sb_kwargs = dict() if isinstance(sb_kwargs, bool) else sb_kwargs vedo_obj.add_scalarbar(**sb_kwargs) sb3d_kwargs = obj.show_options.get("scalarbar3d", None) if sb3d_kwargs is not None and sb3d_kwargs is not False: sb3d_kwargs = ( dict() if isinstance(sb3d_kwargs, bool) else sb3d_kwargs ) vedo_obj.add_scalarbar3d(**sb3d_kwargs) elif data_name is not None and vertex_data is None: utils.log.debug( f"No vertex_data named '{data_name}' for {obj}. Skipping" ) # arrow plots - this is independent from data plotting. arrow_data_name = obj.show_options.get("arrow_data", None) # will raise if data is scalar arrow_data_value = obj.vertex_data.as_arrow(arrow_data_name, None, True) if arrow_data_name is not None and arrow_data_value is not None: from gustaf.create.edges import from_data # we are here because this data is not a scalar # is showable? if arrow_data_value.shape[1] not in (2, 3): raise ValueError( "Only 2D or 3D data can be shown.", f"Requested data is {arrow_data_value.shape[1]}", ) as_edges = from_data( obj, arrow_data_value, obj.show_options.get("arrow_data_scale", None), data_norm=obj.vertex_data.as_scalar(arrow_data_name), ) arrows = vedo.Arrows( as_edges.vertices[as_edges.edges], c=obj.show_options.get("arrow_data_color", "plasma"), ) if not as_dict: vedo_obj += arrows else: return_as_dict["arrow_data"] = arrows axes_kw = obj.show_options.get("axes", None) # need to explicitly check if it is false if axes_kw is not None and axes_kw is not False: axes_kw = dict() if isinstance(axes_kw, bool) else axes_kw axes = vedo.Axes(vedo_obj, **axes_kw) if not as_dict: vedo_obj += axes else: return_as_dict["axes"] = axes # set back temporary show_options if needed if kwargs: obj._show_options = orig_show_options if not as_dict: return vedo_obj else: return_as_dict["main"] = vedo_obj return return_as_dict def _trimesh_showable(obj): """""" pass def _matplotlib_showable(obj): """""" pass
[docs] def make_showable(obj, backend=settings.VISUALIZATION_BACKEND, **kwargs): """Since gustaf does not natively support visualization, one of the following library is used to visualize gustaf (visualizable) objects: (1) vedo -> Fast, offers a lot of features (2) trimesh -> Fast, compatible with old OpenGL (3) matplotlib -> Slow, offers vector graphics. This determines showing types using `whatami`. Parameters ----------- obj: gustaf-objects backend: str (Optional) Default is `gustaf.settings.VISUALIZATION_BACKEND`. Options are: "vedo" | "trimesh" | "matplotlib" Returns -------- showable_objs: list List of showable objects. """ if backend.startswith("vedo"): return _vedo_showable(obj, **kwargs) elif backend.startswith("trimesh"): return _trimesh_showable(obj, **kwargs) elif backend.startswith("matplotlib"): return _matplotlib_showable(obj, **kwargs) else: raise NotImplementedError
# possibly relocate, is this actually used? # could not find any usage in this repo
[docs] def interpolate_vedo_dictcam(cameras, resolutions, spline_degree=1): """Interpolate between vedo dict cameras. Parameters ------------ cameras: list or tuple resolutions: int spline_degree: int if > 1 and splinepy is available and there are more than two cameras, we interpolate all the entries using spline. Returns -------- interpolated_cams: list """ try: import splinepy spp = True except ImportError: spp = False # quick type check loop cam_keys = ["pos", "focalPoint", "viewup", "distance", "clippingRange"] for cam in cameras: if not isinstance(cam, dict): raise TypeError("Only `dict` description of vedo cam is allowed.") else: for key in cam_keys: if cam[key] is None: raise ValueError( f"One of the camera does not contain `{key}` info" ) interpolated_cams = [] total_cams = int(resolutions) * (len(cameras) - 1) if spp and spline_degree > 1 and len(cameras) > 2: if spline_degree > len(cameras): raise ValueError( "Not enough camera to interpolate with " f"spline degree {spline_degree}" ) ps = [] fs = [] vs = [] ds = [] cs = [] for cam in cameras: ps.append(list(cam[cam_keys[0]])) fs.append(list(cam[cam_keys[1]])) vs.append(list(cam[cam_keys[2]])) ds.append([float(cam[cam_keys[3]])]) cs.append(list(cam[cam_keys[4]])) interpolated = dict() for i, prop in enumerate([ps, fs, vs, ds, cs]): i_spline = splinepy.BSpline() i_spline.interpolate_curve( query_points=prop, degree=spline_degree, save_query=False, ) interpolated[cam_keys[i]] = i_spline.sample([total_cams]) for i in range(total_cams): interpolated_cams.append( { cam_keys[0]: interpolated[cam_keys[0]][i].tolist(), cam_keys[1]: interpolated[cam_keys[1]][i].tolist(), cam_keys[2]: interpolated[cam_keys[2]][i].tolist(), cam_keys[3]: interpolated[cam_keys[3]][i][0], # float? cam_keys[4]: interpolated[cam_keys[4]][i].tolist(), } ) else: i = 0 for start_cam, end_cam in zip(cameras[:-1], cameras[1:]): if i == 0: interpolated = [ np.linspace( start_cam[ckeys], end_cam[ckeys], resolutions, ).tolist() for ckeys in cam_keys ] else: interpolated = [ np.linspace( start_cam[ckeys], end_cam[ckeys], int(resolutions + 1), )[1:].tolist() for ckeys in cam_keys ] i += 1 for j in range(resolutions): interpolated_cams.append( { cam_keys[0]: interpolated[0][j], cam_keys[1]: interpolated[1][j], cam_keys[2]: interpolated[2][j], cam_keys[3]: interpolated[3][j], # float? cam_keys[4]: interpolated[4][j], } ) return interpolated_cams